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Statistical RBF Network with Applications to
an Expert System for Characterizing
Diabetes Mellitus

Kyong-Sik Om, Hee-Chan Kim, Byoung-Goo Min, Chan-Soo Shin,
and Hong-Kyu Lee

Abstract

The purposes of this study are to propose a network for the characterizing of the input data and to show how to design
predictive neural network expert system which doesn’t need previous knowledge base. We derived this network from the radial
basis function networks(RBFN), and named it as a statistical RBFN. The proposed network can replace the statistical methods
for analyzing dynamic relations between target disease and other parameters in medical studies. We compared statistical RBFN
with the probabilistic neural network(PNN) and fuzzy logic(FL). And we testified our method in the diabetes prediction and
compared our method with the well-known multilayer perceptron(MLP) neural network one, and showed good performance of
our network. At last, we developed the diabetes prediction expert system based on the proposed statistical RBFN without
previous knowledge base. Not only the applicability of the statistical RBFN to the characterizing of parameters related to
diabetes and construction of the diabetes prediction expert system but also wide applicabilities has the proposed statistical RBFN

to other similar problems.

I. Introduction

Diabetes mellitus is the most common endocrine disease
and one of the major adult diseases in the industrialized
countries. It is a dangerous disease because the diabetic
patient is susceptible to a series of complications that cause
morbidity and premature mortality. Therefore, prevention of
the disease is more important and a lot of efforts have been
made in characterizing the diabetes mellitus to develop an
efficient method predicting the disease. We developed an
expert system predicting the diabetes mellitus based on a set
of examination data.

Expert system is a successful field of the studies of
artificial intelligence. Professor Edward Feigenbaum of
Stanford University defined: “An expert system is an
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intelligent computer program that uses knowledge and
inference procedures to solve problems that are difficult
enough to require significant human expertise for their
solution....[8].” The emphasis of the studies about expert
system has shifted from the hand-crafted system to the
intelligent one. The former consisted of all the software
components and the knowledge base were coded by the
developers while the latter is based on the neural network or
fuzzy logic [9][10][11][12][13]. It is a common agreement
that the fuzzy logic approach is chosen when there exists a
priori knowledge and the knowledge is represented by
linguistic variables. On the other hand, neural network is a
better solution when there does not exist a priori knowledge
and the input data is in numerical form.

Recently, a radial basis function network(RBFN) has been
studied intensively because of its aftractive intrinsic
advantages. There are many reports that RBFNs have very
short learning time compared to other networks and have the
potentials of on-line and real-time leaming [1][2][3]. Also
RBFNs have wide range of application fields including
clustering [4], control [5], pattern recognition [6], optical flow
segmentation [7], etc. In general, it is, however, required that
the input data must be well-ranged in order to get the best
performance. In other words, if there is little or no correlation
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(or tendency) between the input and the output vectors at all,
the neural network won’t provide its best performance.

Our goal is to develop a disease-predicting expert system.
The input data is a set of health examination in numerical
form and we don’t have a priori knowledge, so we chose a
neural network approach. The purpose of this study is to
propose a new neural network which is adequate especially to
a medical expert system with a constraint of no requirement
of a priori knowledge base. We derived this network from
the RBFN, and named it the statistical RBFN. It stemmed
from the fact that this network was applied to analyzing
medical data, where various statistical methods are usually
being used for analyzing relationships between input data and
the target disease. We compared the characteristics of the
statistical RBFN with an existing network of probabilistic
neural network (PNN), and fuzzy logic (FL). The proposed
network’s performance was also cvaluated with the data
collected for predicting the diabetes mellitus. The overall
performance of the proposed network was also compared with
well-known multilayer perceptron (MLP).

This paper is organized as follows. First, in section II, the
proposed statistical RBFNs are introduced. In section III, we
compared the characteristics of the statistical RBFN with the
PNN and FL. Application of the proposed network to
prediction of diabetes mellitus is introduced in section IV, In
section V, performance of the statistical RBFN in predicting
diabetes mellitus is summarized in comparison with MLP.
The construction of diabetes-predicting expert system is
discussed in section VI. Finally, the conclusions are
summarized in section VIL

II. Statistical RBF Networks

RBFNs were originally proposed as an interpolation
method, and their properties as interpolants have been
extensively studied [14]. It is now one of the main research
fields in numerical analysis. RBFNs have been shown to have
universal approximation ability by Hartman et al. [15] and
Park and Sandberg [16][17]. Comparison of RBFNs and
multilayer perceptrons(MLPs) is well summarized in [2, pp.
262-263]. As a big difference from the RBFNs, MLPs
construct global approximation to nonlinear input-output
mapping. Consequently, they have generalization capabilities
in regions of the input space where little or no training data
are available. On the contrary, RBEFNs construct [local
approximations, with the result that these networks are
capable of fast learning and reduced sensitivity to the order
of presentation of training data. The core of RBFN is
choosing an activation function F that has the following form
[14]:

(0 = 23 WiglX — Cl)+ un, a

where { o (IX-Cll) | i=1,2, .., N} is a set of N arbitrary
(generally nonlinear) functions, known as RBF, and || ||
denotes a norm that is usually taken to be Euclidean. The w;
is the weight connected between hidden layer and output
layer. If the number of kernels { activation functions ) is large
enough, the bias term wjp is not necessary. The known data
points CieRF, =12, ..., N'are taken to be the centers of the
RBFNs. Fig. 1. shows the “structure of RBFN without bias
term wyp.

Theoretical investigations and practical results, however,
seem to show that the type of nonlinearity ¢ (<) is not
crucial to the performance of RBFNs [14]. Some of ¢ (=)
are ¢(r) = r ( linear ), ¢ (r) = ¥ ( cubic ), o) = (?/0‘)2
In(7/ &) (thin-plate-spline function), ¢ (r) = exp(-rz,‘(z 0_2))
(Gaussian function), ¢ (r) =V #*+1 (multiquadrics), and ¢
n =1 VA+1 (inverse multiquadrics) [19][20][21][22]. If a
function which is monotonically decreasing from it’s center
of peak such as Gaussian and inverse multiquadrics is used
as an activation function, each hidden unit is assumed to have
membership-like or statistical relationship to a target output.
So in statistical analysis problems, these type of functions are
usually used. For the sake of manipulational easiness,
Gaussian functions are preferred than inverse multiquadrics.
So the Gaussian was selected as an activation function of our
new neural network. The theory for the Gaussian radial basis
functions was well studied in [23].

> F(x)

Input Hidden Output
layer layer layer

Fig. 1. Structure of the RBFN.

1. The Structure of Statistical RBFNs

Basic concept of the proposed statistical RBEN is based on
the possibility theory[25,26]. It is because that the output of
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a disease-predicting network should be, in nature, possibility
rather than probability that the examinee would be a patient
in the future. Another point is that it is a typical two-class
classification problem where two output states (patient or
normal) are defined. In this problem, there exist two cases of
possibility 0.5 which means that based on the input data, it
is hard to say which output state is more possible than the
other. One is when the input has equal tendency to both
output states. The second case is that the input is in dead
zone (no receptive field) which is far from the center of
activation function in the Gaussian RBFN.

To solve this problem, the statistical RBFN is proposed. It
has normalized output between +1 and -1 where the positive
and negative output values represent possibility that the input
has more tendency or correlation to one and the other output
states, respectively. So the zero output value corresponds to
the 0.5 possibility case when input does not belong to either
of the output states. In this way, if the proposed network’s
output characteristics is proportional to the possibility, we can
use this network in any statistical problem. The detailed
structure and learning process of the proposed statistical
RBEN are explained further below.

1) The input units: The input vector (input parameter,
feature vectors, input data) must be normalized. In general,
the range of [0, 1] is usually used. Normalization can be
accomplished by two approaches. One is by help of the
expert who knows the characteristics of input data well. The
other is by analyzing the data histogram and select
appropriate levels.

2) The hidden units: The hidden units connected to one of
the output units must have balanced condition; half of them
represent positive tendency and the remaining half shows
negative tendency. This condition is necessary to 'get correct
possibility output. If this condition is not satisfied, it will
cause a biased output value. The reason for this can be
explained by Fig. 2. As shown in Fig. 2-(a), if the sum of
positive hidden units has the distribution of ¢~* and that of
negative units has 3¢~ V"% the output always produce the
negative value. But if we normalize these distributions to
have the same area like Fig. 2-(b), we can get correct output,
that is the output can be positive or negative like Fig. 2. (¢).
This situation is frequently happened in medical application
where the input data usuvally has biased population. As an
example, in our application of diabetes mellitus, the number
of examinee who were not diabetics in 1993 but became
patient in 1995 was only 63, but the number who stayed
normal was about 1200.

3) The centers: Fixed centers selected at random sampling

was used in our statistical RBFN. The learning strategies of
RBFNs can be categorized into three groups as follows: fixed
centers selected at random, selforganized selection of
centers, and supervised selection of centers [2]. In many cases
(with many hidden units), the method using fixed centers
selected at random works well for statistical problem.

4) The widths: In an isotropic Gaussian function, its
standard deviation is related to the width, the spread of the
function from its center. Too narrow width may cause bad
generalization capability and on the other hand, too wide
width can produce overlapping of large area in neighborhood.
It is, therefore, necessary to find an appropriate width value.
In our proposed statistical RBFNs, this is the only one
parameter to be determined in training procedure. The
training algorithm will be explained in detail later.

5) The weights: Positive, negative, zero weights means the
relation between the hidden and output units have positive,
negative and zero correlation depending on the membership
of ¢, respectively. Typical values are +1, -1 as positive and
negative weights, respectively.

6) The output units: The output value of each output unit
is normalized as follow:

A
We@“ i
Ot —— @

.

Depending on the correlation between the input data and
output state, the output takes positive or negative value. As
explained before, zero output value produced by two major
causes. One is from the dead zone, and the other from the
equal positive and negative tendency. For an example in Fig.
2-(b) and (c), the points at x = *+8 are in dead zone, and x
= -1.5032 and x = 0.8366 correspond to the equal positive
and negative tendency case.

An example of our statistical RBFN is shown in Fig. 3
where three output case is represented. In this case, output
nodes are independent, e.g., both output node A and B can
produce positive values, then we can interpret it as the input
belongs to A and B simultaneously with certain possibilities.
The positive tendency between a hidden unit and an output
unit is represented by a bold line and negative tendency by
a thin line. Since each of three output is a separate two-class
classification problem, the width parameters ¢1, o2 and o3
for A, B, and C differ from each other. Note that each output
node consists of equal number of positive and negative
tendency.
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Fig. 2. (2) ¢ and 3¢ "V (b) ¢ and (.5¢ <N,
© & D5 B

Input layer

Hidden layer  Qutput layer

Fig. 3. Example of the statistical RBEN. Input and output
dimension is five and three, respectively. Nodes in
the hidden layer represent each memberships to the
output layer such that the second hidden node
(ABC) belongs to every output nodes and the empty
node has no relationship to any output node. The
bold and thin lines between hidden and output layer
represent positive weight ( typical value is +1) and
negative weight ( typical value is -1) , respectively.

2. Training of the Network

As explained before, in the proposed statistical RBFN, the
only one parameter to be determined in training procedure is
the width of the Gaussian. If width ¢ in the Gaussian RBFN
is too small or large, the constructed statistical RBFN has low
recognition ratio for the untrained data which means low
generalization ability. :

Steps for finding an optimal width parameter ¢ are given as
follows :

Step 1. Initial width is set to a small value (g0 ).

Step 2. Calculate the classification ratio of input data
(RAT(0)).

Step 3. Calculate the next ¢ (n) by adding a small value B
to previous value ¢ (n-1): ¢ (n)=¢ (r-1)+ 3

Step 4. Calculate the overall classification ratio for RAT(n)
with given width value.

Step 5. Does ¢ reach a final target ¢ value? If it is ‘No’,
go to Step 3. If it is "Yes’, go to Step 6.

Step 6. Find the ¢ for the highest value of RAT(x).

This method is based on the maximum classification
condition. It is also an fast-computing one-pass algorithm.
Here, the input data used for netwok training must be
different from those used for hidden layer formulation by
locating centers of Gaussians in order to increase
generalization capability of the network.

III. Comparisons of a Statistical RBFN
with PNN and Fuzzy Logic

Possibility theory was introduced by Zadeh [25] in 1978 to
model possible events based on the theory of fuzzy logic and
fuzzy sets. Both possibility and probability are two techniques
for representing and manipulating uncertain or imprecision.
While the probabilities have to sum to 1 over the input
domain range, the possibility values are not so restricted.
High possibility does not necessarily imply high probability,
nor does a low degree of probability imply a low degree of
possibility. Nevertheless, if the possibility of an event
becomes small, then its probability would tend to smaller too,
however, the converse is not true. Furthermore, if an event is
impossible, it is bound to be improbable. In conclusion,
possibility provides a subjective appraisal whereas the
probability does an objective one [26].

Proposed statistical RBFN and PNN [24] have different
bases. The former is designed to produce possibility and the
latter provides probability. To accomplish this object, PNN
utilizes Parzen weighting function for the estimation of
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probability density function ( pdf ). Following considerations
were made to provide the proposed network with possibility
characteristics.

Firstly, the statistical RBFN uses membership-like,
Gaussian, activation function for the hidden units. Secondly,
the normalized output of Eq. (2) has the possibility
characteristics rather than probability ones, e.g., if there exists
a hidden unit which produces a very small positive value &
and the other kernels produce a zero one, the final output is
(-1X0+-1X0+-1X0+ .. +1X0+1xX0+1Xg)/ (0
+0+0+ .. +0+0+ ¢ ) =1 (very high). But in the
probabilistic point of view, the output is & (very low). This
property enables us to characterize the input data subjectively.
The mathematical derivations of the functional equivalence of
RBFNs and fuzzy inference systems are reported in [27][28].
Our statistical RBFN is a special kind of RBFNs. So, as
general RBFNs can carry out the characteristics of fuzzy
inference systems, proposed statistical RBFN has the same
characteristics of fuzzy inference systems. Actually, the
normalized output of Eq. (2) corresponds to one of defuzzi-
fication methods, namely, weighted combination method
(simplified center of gravity method) in fuzzy reasoning.

IV. Applications to Prediction of
Diabetes Mellitus

1. Medical Background

The diagnosis of symptomatic diabetes is not difficult. It
can be judged by the presence of diuresis(frequent and large
amount of urine output) and hyperglycemia(state of high
plasma glucose concentration). But the prediction of the
possibility of a health examinee to become diabetic is very
hard. It is also a meaningful study to find the relationship
between the parameters taken in routine health examination
and the possibility to be a diabetic patient.

Until now, there has been no report on the exhaustive and
objective studies about these points. So, due to the lack of
knowledge bases, it is impossible to make an diabetes
predicting expert system with conventional fuzzy logic based
methods. Also it is impossible to make an neural network
based system since we do not know what factors are
meaningful as the inputs of neural network. This problem
leads us to think a new network and the statistical RBFN is
able to cope with it.

Since we did not have a priori knowledge about what
factors have correlation with diabetes, we considered all
examination parameters. Therefore, the input data is very
ill-posed in terms of conventional neural networks. Here, the
‘very” means the deviation is very high and it is very possible
that the input data might be meaningless for predicting

diabetes. The input data was collected from the Yonchon
district health survey, in Korea twice in 1993 and 1995, Total
population was about 1200. The number of examinees who
were not diabetics in 1993 but became patients in 1995 was
63. Examinee whose GLU2 (fasting plasma glucose level) is
higher than 140 or GLU3 (plasma glucose level at two hours
after meal) is higher than 200 was diagnosed to be a diabetic

patient.
2. Description of Data

Total 14 health examination parameters were used in the
proposed statistical RBFN and summarized in Table 1. The
minimum and maximum values were obtained from the
random sample data of 30 normal examinees. The minimum
and maximum values were determined by investigating the
histogram heuristically, and those shown in the Table 1 are
not true minimum and maximum value. These values were
used later as normalizing indices for the input of neural
network, i.e., if one input value exceeds these extremes, it is
set to be these values.

Table 1. Parameters under considerations.

. ! | Minimum |Maximu
Parameters Meaning [unit] i
value Value
1. GOT | Glutamic-oxaloacetic transaminase | 10 5
2. GPT Glutamic-pyruvic transaminase b 20
3. CHO Cholesterol I 120 170
4, TG Density of neutral fat 80 250
5. HDL Density of High Density 20 40
Lipoprotein choelesterol
6. GLU2 | Fasting plasma Glucose level 35 110
7. GLU3 Plasma Glucose level two hours 70 120
after meal
8. AGE Age [Year] 30 70
9. SBP Systolic blood pressure [mmHg] 100 140
10. DBP Diastolic blood pressure [mmHg] 65 85
11. HEI Height [cm] 150 170
12. WEIL Weight [Kg] 55 70
13. BMI Body mass index 20.0 25.0
= Weight / (Hight2) [Kg/m2]
14. WHR | Waist to hip circumference ratio 0.80 0.90

V. Performance of the Statistical RBFN
in Predicting Diabetes Mellitus

1. Results Comparison between the Proposed Statistical
RBFN and MLP Network

The proposed statistical RBFN is constructed with 14 input
units as parameters shown in Table 1 and 1 output unit. The
input units represent the parameters to be analyzed, and the
output unit represents the possibility value with which the
specific examinee might be a diabetic patient or remained
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normal. As an activation function, the modified Gaussian
kernel defined as follows was used;

o () =exp(— K. 3)

where 1/(2 ¢ is simply replaced by K.

Now, choosing the width parameter in training procedure is
changed to choosing K value. In Step 3 of width determining
procedure, the variable & is determined as follows. In the
range of K < 0.1, 4 is set 001, and in the range of K >
0.1, £ is set 0.1. In Step 6, the optimal K was determined
based on the classification results. The total number of input
data sample was 126 which consisted of same number of 63
normal and patient cases to satisfy the constraint of same
number of positive and negative tendency. The total 126 data
samples were allocated into three procedures; 1) network
construction by determining hidden nodes as the center
position of Gaussain functions, 2) training the network by
selecting the optimal width K, and 3) test the network’s
performance by evaluating the classification results. Table 2,
3 and 4 show the performance of the proposed network with
different allocation of the input data samples. Allocation
condition is represented by the number of the input data
sample used for each proceudre 1), 2) and 3) as (62:32:32),
(74:26:26) and (86:20:20) for Table 2, 3 and 4, respectively.
These allocation conditions approximately correspond to
(2:1:1), (3:1:1) and (4:1:1), respectively. In selecting optimal
width value, it is recommended to choose K which provides
nearly equally maximum classification score for both width
determining data set and test data set. It is because there
exists no correlation between the classification results for two
different input data sets. Datal and Data2 marked in the
tables represent data set used in width determining procedure
and testing data set, respectively. Every case shows that too
wide or too narrow width parameter bring poor results as
expected.

As a result, the input data allocation condition of (3:1) in
Table 3 produce better results than other two conditions in
terms of comparable classification score for both data sets of
Datal and Data2. So we can conclude that if we divide the
given input data as the ratio of (3:1:1), and the 3/5 portion
of data were used for hidden units and 1/5 for width
parameter, then the classification score for both data set of
unused in training and part of training will be comparable
each other. Then, we selected the optimal value of K as 1.6
from Table. This decision was made since it is the midpoint
value of K within the range of 0.9-2.3 where the classification
score for Datal was maximum in Table 3. The resultant
classification score is summarized in Table 5 with the
finalized conditions. One important point to note is that the
classification score is not important in this problem. Final
classification score of about 70% is very high when
considering that it is very hard for the conventional neural

networks to cope with these kinds of data. This fact can be
verified by testing MLP network with the same data set.

For the comparison, we have also constructed the
well-known MLP network. The MLP network has 14 input
units, 74 hidden units, and 1 output unit. This corresponds to
the condition of Table 3 in the statistica]l RBFN. The MLP
network was set to have learning rate 0.1 and momentum
term 0.7. The input parameters were also normalized between
0 and 1 as they were used in the statistical RBEN. The output
was also normalized between 0 and 1, which represent
normal and patient, respectively. The number of data used for
network learning was 100 (50 for patient and 50 for normal).
A statistical RBFN in Table 3 also uses 100 data for
construction 74(37 patient + 37 normal) for hidden units
26(13 patients +13 normal) for choosing width parameter.
After long period of iteration, MLP did not converge at all.
After 30000 learning steps, we stopped the leaming on
purpose and testified the classification score. Then the output
of the MLP for the learning data were either 0.499 or 0.501.
This means that it’s output oscillates and the learning process
is meaningless. It is an expected result because there are
almost no correlation between input data and output. The
recognition ratio of the MLP for the untrained data - 13 data
for patients and 13 data for normal persons - was also 50[%].
It again confirms the fact that the input data are very much
ill-posed and these are meaningless parameters to predict
output.

Table 2. Number of correct classification with number of
data for (Hidden umits : Width parameters) =
(62:32) = (2:1)

!K Data 1[Data 2 [Deta 1/Data 3 Kl)atalIData2 5 |Pata 1{Daca 2
3|z Tlesafca] Tlee o] Floz|e
oo| 16| 15 |o1| 5| |21 5] 2 Ja1] 5 | @
00z] 17 | 18 |o2| 2 | 21 [22] o5 | & [az] = | 1
o3| 22 | 1 [o3] 8 | 21 [23] =5 | & [43] = | 17
ood| 5 | 19 [oa] 22 | 21 [24] 5 | & [aa] 2 | 17
0| B | 2 [os] 22 | 21 |25] = | o [a5] 2 |
0| 5 | 2 los| 22 | 21 [26] 5 | 2 [as| 2 | 1
07| B | 2 lo7| = | 2 [27] = | 18 [a7] 2 | 16
008 25 | = |os| 2 | 21 [28] o5 [ 18 [ag] 2 | 16
om| 55 | 2 |oo] 2 | 2 (20 = | 18 [a9] 2 | 16
10| 27 | 2 [20] | 18 (50 2] 18

1| 7 | 2 [a1] 5| 18 [s1] 2 [ 16

12| 7 [ 2 [32] = [ 18 |52 22 | 16

13| | 2 [88] = [ w7 ]s3] 22 ] 16

14 6 | 2 [24] 5| 17 |54 2 [ 16

15| % | 2 [35) 5| 17 [s5] 2| 16

16| % | 2 |36] 5| 17 |s8] 22 | 16

17| % | & |39 = 17 (53] 22| .

18 26 | 2 |28 = | 17 s8] [ 16

19 5 | 22 |29] = | 17 |59 2 | 16

200 5 | 2 (40| | 7 |60 22 | 16
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Table 3. Number of correct classification with number of
data for (Hidden units : Width parameters) =
(74:26) = (3:1)

Data 1| Data 2] s |Detal|Deta2| |Daal|Data2| [ Data 1 Deta2

(32)((32) (32)|(32) (32)|(32) (32))(32)

001| 13 12 o1

0e2| 14 13 |02

003 17 15 |03

004 19 16 |04

005 19 17 |05

006 19 18 |06

007 19 18 |07

008| 19 18 (08

009 19 18 |09

18 |21 20 18 |41| 17 16
8 |22 20 18 |42 17 16
18 23| 20 18 | 43| 17 16
18 |24 19 18 | 44| 17 16
18 |25| 19 18 |45 17 16
18.|26] 19 18 48| 17 16
18 |27 19 17 |47 17 16
18 |28 19 17 48[ 17 15
19 (29| 19 17 | 49| 17 15

BEIEBEBIE3 88 8B BB 6BB|IBB

10 19 [30] 19 | 17 |50] 17 | 15
11 1, 021, 49, |z sl 17 |5
12 19 (32| 19 | 17 |s2] 7 ] 5
13 18 [33] 18] 16 [53] 7 | 5
14 18 |34] 17 | 16 [54] 17 | 15 |
15] 18 |35 17 | 16 |55 17 | 15
16 18 36| 17 | 16 |58 17 | 15
17 1B (37 17| 16 |57 7] 15
18 18 |38 17 | 16 |58 17 | 5
19 1B [39] 17| 16 |59 17 ] 15
20 18 (40| 17 | 16 |60 17 | 15

Table 4. Number of correct classification with number of
data for (Hidden units : Width parameters) = (86:
20) = (4:1)

Data 1|Data 2| Data 1|Data 2, Data 1|Data 2 Data 1|Data 2

Elca|ca| Eloa| e Koo Kooz

=
Ll

001 10 <l ki e 2 15 |21 12 15 |41 10 13
002| 9 13 02 12 16 |22 12 15 [42| 10 13
003 | 10 14 |03 12 1o w/Eaig M2 15 |43 10 13

004 | 11 14 04| 12 16 |24 12 15 |44) 10 13
06| 11 14 (05| 12 16 |25 12 15 |45 10 13
006 | 11 5 (06| 12 16 |26 12 15 [46] 10 13
007 12 14 |07 12 167 S22 5012 L [47] 10 13
008 | 12 14 (08| 12 16 |28 12 15 | 48] 10 12
009 | 12 15 |09 12 16 |29 12 15 [49] 10 12
10| 12 16 (30| 12 15 (50| 10 12
11] 12 16 |31 12 15 51 10 12
12[12 16 |32 12 15 |62 10 12
13| 12 16 |33 12 15 |53 10 12
14 12 16 |34 12 14 |54 10 12

15] 12 150 |35 ]2 14 |55( 10 12
16| 12 15 [36] 12 14 56| 10 12
17| 12 15 |37 12 e st e 12
18| 12 15 |38 12 14 |58 10 12
19| 12 15 (39 12 14 |59 10 12
20| 12 15 |40( 12 14 |60 10 12

Table 5. Classification ratio of the proposed statistical RBFN
with K=1.6 in Table 3

Sy Classific':at.ion percentage of
statistical RBFN [%]
Patients 9/13 =692
Data 1 |‘Normal Persons 11 /13 = 8456
Total Persons 20/ 26 =769
Patients 10 /13 = 769
Data 2 | Normal Persons 8 /13 =615
Total Persons 18 / 26 = 68.2
Average total persons 38 /52 =731

2, Ordering of Input Parameters in Sequence of High
Correlation to Diabetes Mellitus

In this subsection, we examined the relations between 14
health examination parameters and diabetes mellitus. This was
performed as a kind of simulation study by manipulating the
input parameters to provide hypothetical situations. It is very
interesting and important study for characterizing the disease.
First of all, an imaginary normal input parameter set was
established. We selected maximum and minimum values of
each input parameter as two values equally spaced from the
center of the normal group’s histogram. Then all input
parameters were normalized with these extreme values.
Therefore, by setting all input patameter value as 0.5, a
hypothetical normal data set was achieved. When all input
values were 0.5(hypothetical normal examinee), the output of
the proposed statistical RBFN with Table 3 condition and
K=1.6 was -0.2134. This result proves again the plausibility
of the established network since normal input data should
bring negative output.

Next, we manipulated the input parameter set as each
parameter was set to 1 and -1, maximum and minimum value,
respectively, one by one while all other 13 parameters were
kept unchanged as 0.5. The results are summarized in Table
6. Positive output represents that the corresponding input
parameter change caused the network output shifted toward
patient side and negative output means more shift to normal
side from -0.2134, a hypothetical normal output point. In
Table 7, the most influential 9 input parameters to diabetes
are listed in diminishing order. This results were used in the
next section for the construction of an expert system for
diabetes prediction.
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Table 6. Network output with manipulated input parameter

set.

Parameters Max case Min case
1. GOT 0.0613 0.0479
2. GPT 0.0043 -0.0049
3. CHO ~0.0609 -0.0336
4. TG 0.0758 -0.0672
5. HDL 0.0664 -0.0583
6. GLU2 0.1040 -0.0926
7. GLU3 0.0657 -0.0577
8. AGE 0.1200 -0.1853
9. SBP 0.0875 -0.1605

10. DBP 0.1262 -0.2014
11. HEI -0.0263 -0.0541
12, WEI -0.0521 -0.0366
13. BMI -0.0560 -0.0393
14. WHR 0.1009 -0.1873

Table 7. Ordering of paremeters based on Table 6.

) i :
Rank - Correlation " Correlation| Rank o Correlation
mumber value value  |number| valug
DBP | 0.1262 WHR | 0.1009 | 7 HDL | 0.0664
2 AGE | 0.1200 SBP | 0.0872 | 8 GLU3 | 0.0657
3 GLU2 | 0.1009 TG 0.0758 9 GOT 0.0613

3. Characteristics of the Proposed Statistical RBFNs

In this subsection, we summarize the characteristics of our
proposed statistical RBFNSs.

1) The leaming procedure requires only one parameter
adjustment. It is the width of Gaussian an activation function
used in the hidden units. It is an one-pass algorithm.

2) The output unit produces normalized output ranging
from -1 to +1 not from 0 to +1.

3) The number of hidden units with weight +1 must equal
to that of hidden units with weight -1.

4) Number of data used for (hidden units width
parameter) = ( 3 : 1 ) is a reasonable ratio for the optimal
construction of the proposed statistical RBFN. This requires
further examinations.

5) In the statistical RBFN, output nodes are independent,
e.g., if both output node A and B produce positive value no
matter which is bigger, it means that the input belongs to A
and B simultaneously.

6) Our statistical RBFN is based on the possibility theory
rather than probability theory.

VI. Construction of an Expert System
for Diabetes Prediction

An expert system to predict diabetes mellitus is a class of
disease predicting medical expert system. We construct this
expert . system by limiting  the input parameters of the
statistical RBFN based on the result in previous section. It
was accomplished by ‘selqctii_lg only 9 input parameter listed
in Table 7. We call it ’the enhanced statistical RBFN" as
compared to the standard statistical RBEN. The rationale of
this selection and elimination of input parameters is that other
parameters than shown in Table 7 do not contribute to change
the normal state to patient at all. Another step added in expert
system construction is a decision threshold DT for the final
decision of disease based on the network output value. The
role of DT is to give an interface zone of 'Unknown’ rather
than a sharp edge between ’Patient’ and ’Normal’. As a
performance evaluation of the proposed expert system, the
diabetes prediction score of the statistical RBFN with full
input parameters and enhanced statistical RBFN was
compared at 6 different threshold levels. The tested results
are summarized in Table 8. Both cases bring nearly same
prediction ratio (RP (Relative Prediction ratio) = (number of
correctly predicted cases) [ (number of total cases - number
of predicted as unknown cases), AP (Absolute Prediction
ratio) = (number of correctly predicted cases) / (number of
total cases). But as the DT increases, the RP and AP of the
enhanced statistical RBFN increases more rapidly and
decreases more slowly, respectively, than the standard
statistical RBFN. This implies that we can get the higher
performance and short calculation time due to small number
of input parameters with the enhanced statistical RBFN. This
result also shows that the range of 0.1 to 0.2 is appropriate
for DT.

Table 8. Performance results of the constructed expert system
(RP : Relative prediction, AP : Absolute prediction,
R : Correct prediction, U : Unknown, DT : Decision

threshold)
Full parameters

DT 1Seﬂ:ientst RNcwrmalU RP [%] AP [%]
— =

0 20 0 18 0 | 3_8 93_012 3:8 43_012

e e e e R
010 | 18 3 17 2 | Sf 54,457 3_5 é?%z
015 | 16 5 16 4 32 ;4%13 3—2 éfl.SB2
020 | 15 6 16 5 3.1 %f‘r)i-] 21 ;9332
05 | 15 | 6 5 | B | /5%0 30 g722
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VII. Conclusions

The main purpose of this study is to propose a new neural
network to characterize diabetes mellitus by analyzing the
relationship between the input health examination data and
the disease. Based on the proposed neural network, it was
also attempted to show how to design predictive neural
network based expert system which doesn’t require previous
knowledge base. We derived this network from the RBFN,
and named it as the statistical RBFN. The proposed network
can replace the conventional statistical methods for analyzing
relationship between a target disease and health examination
parameters. Since it is based on the possibility theory, the
proposed statistical RBFN is expected to be applied to almost
all statistical problems.

We compared the characteristics of the statistical RBFN
with the PNN and the FL. The performance of the proposed
network was verified by comparing diabetes prediction
capabilities with the well-known MLP neural network. The
input data was collected through a large scaled health survey
in Yonchon district area performed twice in 1993 and 1995.
Since there exists no remarkable correlation between input
health examination data and the disease, the result using
conventional network (MLP) was poor as expected, but the
proposed network produced relatively good classification
score. We also ranked the input health examination parameter
according to the influence on the diabetes mellitus. This was
performed as a kind of simulation study by manipulating the
input parameters to provide hypothetical situations. It may be
interpreted as a list of the risk factor of diabetes mellitus,
which can be utilized in prevention of the disease.

Finally, we developed the diabetes prediction expert system
by enhancing the proposed statistical RBFN. Enhancement
was performed in two aspects. Firstly, out of 14 health
examination parameters, only 9 which shows higher
correlation to the disease were used. A decision threshold DT
was also incorporated to finally predict the disease. With

these two preparations, we designed an expert system with
improved results. It is important because any previous
knowledge base was not used.

Future researches must be concentrated on the handling of
linguistic data rather than the numerical one. We think this is
possible because the proposed statistical RBFN has close
relationship with fuzzy logic system. Also, a method of
finding vector-type width parameter of Gaussian activation
function, which is expected to enhance the performance in the
hidden units must be studied.
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